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Homogeneous Anisotropic Cosmological Models with
Variable Gravitational and Cosmological ‘“‘Constants”

T. Singh' and Anil K. Agrawal'
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The Einstein field equations with perfect fluid source and variable A and G for
Bianchi-type universes are studied under the assumption of a power-law time
variation of the expansion factor, achieved via a suitable power-law assumption
for the Hubble parameter suggested by M. S. Berman. All the models have a
power-law variation of pressure and density and are singular at the epoch ¢t =0.
The variation of G(t) as 1/t and A(f) as 1/¢2 is consistent with these models.

1. INTRODUCTION

The “cosmological constant problem” can be expressed as the dis-
crepancy between the negligible value A has for the present universe
(Weinberg, 1972) and the values 10°° times larger expected by the Glashow-
Salam-Weinberg model (Abers and Lee, 1973) or by the grand unified
theory (GUT) (Langacker, 1981), where it should be 10'” times larger.
Recently Wahba (1989) studied the cosmological function A(¢) in detail.
Chen and Wu (1990) suggested that Acc 1/ R?, where R(t) is the scale factor
in the Robertson-Walker model. Abdel-Rahman (1990) considered a model
with the same kind of variation. Berman et al. (1989), Berman and Som
(19904a,b), and Bertolami (1986a,b) stressed that the relation Aoc¢? plays
an important role in cosmology. It has been shown by Berman (1983) and
Berman and Gomide (1988) that all the phases of the universe, i.e., radiation,
inflation, and pressure-free, may be considered as particular cases of the
deceleration parameter g = const type, where

g=—-RR/R? (1.1)
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where dots stand for time derivatives. We extend this definition to the
Bianchi-type cosmological models. We consider Einstein’s field equations
with time-varying A and G and take the energy-momentum tensor of a
perfect fluid. We assume that the conservation law for matter holds.

2. FIELD EQUATIONS

Einstein’s field equations with variable cosmological and gravitational
“constants” A and G are given by

R*,=38",R=8nG(t)T*,+ A(t)8", (2.1)

where R", is the Ricci tensor; R =g*"R,, is the Ricci scalar; and T*, is
the matter energy-momentum tensor.
From the divergence of (2.1), we get

87G T, +87G(T",. )+ A 8", =0 (2.2)
The energy-momentum tensor is
T..=(p+p)u.u, —pg.. (2.3)
The four-velocity vector u* is
u*=[0,0,0, (g2) "] (24)

3. BIANCHI TYPE 1 MODEL

The Bianchi type I metric is

dS?=dr* — R¥(t) dx*— R3(t) dy>— R5(t) dz° (3.1
For the metric (3.1), the field equations (2.1) and (2.2) reduce to
ﬁj ﬁ?ﬁjﬁz —87Gp—A (3.2)
%+§Z+§ gz—SwGpr (3.3)
%+I€2+§ 22_8 wGp— A (3.4)

R,R, R,R, R;R,
R,R, R,R, R;R,

=-87Gp—A (3.5)

B B .
87er+87TG|:p+(p+p)( +I;Z+ 3):l+A=O (3.6)
2
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If we suppose the energy conservation law T*,,=0 to hold, then
(3.6) reduces to

] R, R, R3>
+(p+p| =+—+=—]=0 7
p+(p p)(Rl R. R, (3.7a)

A=-87Gp (3.7b)

where the quantities with dots refer to their derivatives with respect to
coordinate 7.
We define the 3-volume by

V(1) =[R,R,R;]' (3.8)
We assume the solution of equations (3.2)-(3.7) in the form
V(t)=(mDt)"/™
R,(t)=(my;D;t)"/™
R,(t) = (m,Dyt)V/™ (3.9
Ry(t) = (myD5t)/™s
AY=Aet™, mymy,m,, my#0

where m, my, m,, msy, D, D,, D,, D5, and A, are arbitrary constants. From

(3.8) and (3.9), we get
1 1/1 1 1
—=—|—t—t— 10

m 3<m1 m, m3> (3.10)

Using (3.9) in (3.2) and (3.5), we get the pressure and density respectively,

1 1 1 1 1 1
ngpzﬁ(A0+—2~—~—+————+ > (3.11)

m, m;, ms; m; nNMm;

1 1 1 1
87TGp=——2(A0+ + + ) (3.12)
t mm, M,m; msm,

From equations (3.2)-(3.4) and (3.9), we have

1 1 1 1 1 1
S VA I S (3.13)
m, m, My, m; m; mim,

1 1 1 1 1 1
— = (3.14)

. A
8mpG =3 (3.15)
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Equations (3.12) and (3.15) give (G/G) varying as 1/t Then G, p, and p
vary as 1/t. The model is singular at t =0, and with its evolution, the
pressure, density, and the cosmological term decrease.

Further,
" 1 ( 1 1 4 1 1 1 1 ) (3.162)
z=— |t .16a
pp 87TGt2 m% m, m§ m; mpym, mms
1 1 1 1 1 1 2 1
tp=——— |t — e ——————————2A,] (3.16b
PTP=RnGE <m2 mi m; m: mm, m,m; mym 0) ( )
1 3 3 3 3 2 1 1
+3p=——| St —————+2A,} (316
pop 8776[2()’)1% m, m3 m; mpm; mm, mm, 0) (3.16¢)

3 ———(—3——i+i~i— RN S —4A) (3.16d)
PP = enGei\m, m2 m; m: myms mm, mms 0 '

The reality conditions p =0, p =0, and p —3p = 0 impose further restrictions
on the model besides (3.10), (3.13), and (3.14).

4. BIANCHI TYPE II MODEL
The Bianchi type II metric is
ds?=dt*-S* dx*—R> dy*
—(R?*y*+18%y*) dz° — §’y” dx dz, (4.1)
where §=S(1) and R=R(t).
The field equations (2.1) and (2.2) for the metric (4.1) lead to
R (R 38
—+{5) ~2=5= - 42
2% (R> TR 8mOp A (4.2)
R § RS 18
2 - =8nGp - 43
RTs RsTagrTdmOr A (43)

RS [R\*> 182
— 4=} ———=—=-87Go—A 4.4
2Rs (R) 4R 8mor (4.4)

. S R .
87TpG+87TG|:;5+(p+p)(§+ZE>:|+A=O (4.5)

If we assume that the energy conservation law for matter holds, then
(4.5) reduces to

R
A=—-8mpG (4.6b)

p+(p+,p)<g+25> =0 (4.6a)
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We define
V(t)=(SR»)'? (4.7)
We assume the solution of equations (4.2)-(4.6) in the form
V(t)=(mDt)"/™
S(t)=(m,D;t)"'™
R(t) = (myD,t)"/™
A(t) = Aot 2, m, m;, m,# 0

(4.8)

where m, m,, m,, D, D,, D,, A, are arbitrary constants. From (4.7) and
(4.8) we get

3mym,
=— 49
" 2m,+m, (4.9)

Using (4.8) in (4.2) and (4.4), we get p and p, respectively:

1 3 2\ 3(mDyt)¥™
BrGp=—\Aog+—S~——} - —F 4.10
i 12< 0 m3 mz) 4 (m,D,1)* ™ ( )
1 2 1 1 (m,D, )™
8mGp=—— + +— |+ 4.11
P (AO m,m, m%) 4 (m,D,1)"m (@1
From (4.2), (4.3}, and (4.8), we have
l(i_L_L A1 )
?\mi m, mi m mm,
(mlth)z/m’
=1 4.12
(myD,1)¥™ ( )
This is satisfied, leading to a relation between the constants, if
2 1
—=1+— (4.13)
From (4.6b) and (4.8), we have
., A
8"”’G:T30 (4.14)

Equations (4.11) and (4.14) give G/G. When (4.13) is satisfied, G/ G varies
as 1/t. Then G, p, and p vary as 1/t The model is singular at ¢ =0.
Further we can easily obtain

bpe— [2< 1 1 1 ) 1 (mlDlt)z/m‘] (4.15a)
_ el BT = .15a
PTP=erG | P m5; m, mm,) 2 (mD,t)¥™
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ST YU S WY )
PP G| 7 ot mm, m? (myD,t)¥ ™

1 [2 1 4 3 (m,D,1)*™
pH+3p=—— —(A +——+———)- e
FAN > (myD, )™

387G Lt mm, m; m,

1 [2/3 1 5 5 (m, Dyt )2/'"]
“3p=—— | S| —— S 2A |+
p p 87TG _t2<m2 mym, m2 0) 2( 2D2t)4/m

(4.15b)

(4.15¢)

(4.15d)

The reality conditions p =0, p =0, and p — 3p = 0 impose further restrictions

on the model besides (4.9), (4.12), and (4.13).

5. BIANCHI TYPE III MODEL

The Bianchi type IIT metric is
dS®> = dt*~ Ri(t) dr’ — R3(t)[ d#*+sinh® 6 d¢°]

For the metric (5.1), the field equations (2.1) and (2.2) reduce to

R, (R\ 1
2~2+< 2) =87Gp—A

R') RZ R2

R, R, RR,

TR SIS E S Y

R, R, R.R, P=
R,R, <R2) 1
PR i —87Gp— A
R,R, \R,) Ri T

. R, _R .
87TpG+8wG|:ﬁ+(p +p)<—‘—+2 —3>] +A=0
R, "R,

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

If we assume that the energy conservation law holds, then (5.5) reduces to

. R, Rz)
+(p+p)| =+2=2]=0
p+(p 17)<R1 R

2
A=-8 ﬂGp
We define
V(t)=(R,R3)'"
We assume the solution of equations (5.2)-(5.6) in the form
V(t) = (mDt)"™
Ry(t)=(mD,t)"'™
R,(1) = (m, D)™
A1) = Aot 2,
where m, m,, m,, D, D,, D,, and A, are arbitrary constants.

m, my, m,#0

(5.6a)

(5.6b)

(5.7)

(5.8)
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From (5.7) and (5.8), we get

L (5.9)
2m,+m,

Using (5.8) in (5.2) and (5.4), we get p and p, respectively:

1 3 2 1
= (A=) 5.10
§mGp t2< ¢ m? m2> (m,D,t)* ™ (5.10)
1 1 2 1
87Gp = —= [ Ag+—+ + 5.1
wGp t2< " ml m1m2) (myD,t)* ™ G.11)

From (5.2), (5.3), and (5.8), we get
1/2 1 1 1 1
—( R N L - ) (5.12)

= L _ .
f\m; m, mi m, mm, (m,D,t)*'™

Equation (5.12) is satisfied and leads to a relation between the constants
when

m,=1 (5.13)
From (5.6b) and (5.8), we have

. A
47pG :730 (5.14)

Equations (5.11) and (5.14) give G/G when (5.13) is satisfied,
G 1
—C— 5.15
<7 (5.15)

Therefore G, p, and p vary as 1/t and are singular at t =0. Further

1 1 1 1
o

87Gt* \m5 m, m,m,
p_pzﬁ—[%(i_m%—mllmzﬂx‘))+(m2Dit)2/’"2} (5-16b)
P 7 (e mllmz“")(szit)z/mz] (3169

The reality conditions p =0, p =0, and p —3p = 0 impose further restrictions
on the model besides (5.9), (5.12), and (5.13).



1048 Singh and Agrawal

6. KANTOWSKI-SACHS MODEL

The Kantowski-Sachs metric is
dS®=dt*— R¥(t) dr’ — RX(1)(d6>+sin® 6 d¢?) (6.1)
For the metric (6.1), the field equations (2.1)-(2.2) reduce to

R, (R 1
2—3+(—Z) +—=87Gp—A (6.2)

R, \R,/ "RZ
R, R, R,R,
Sy 2 2 G- 6.3
R R, TRR,BTOPA (6.3)
R,R, (22)2 1
212 [ 22) 4~ 8xGp~-A (6.4
RR, \R,) "RZ °TF (6.4)
) R, R .
87rpG+87rG[p'—|—(p+p)(——1—+2-—z)]+A=0 (6.5)
R, R,

If we suppose that the energy conservation law holds for matter, then
(6.5) reduces to

ﬁ+(p+p)(%+2%)=0 (6.62)
A=-87Gp (6.6b)

We define .
V(t)=(R,RY)"? 6.7)

We assume the solution of equations (6.2)-(6.6) in the form
V(1) =(mDt)"/™
R\(t)= (mlDlt)l/ml

Ry(t) = (myDyt) V™ (68)
A(t) = Aot 2, m, my, m,#0
where m, m,, m,, D, D,, D,, and A, are constants.
From (6.7) and (6.8), we get
____.%'_nl_mz_ (6.9)
2m,+m,
Using (6.8) in (6.2) and (6.4), we get p and p, respectively,
1 3 2 1
== At )+ —— 6.10
8w Gp £ (AO m3 m2> (myD,t)*/™ ( )
1 1 o
87TGp=—*t'§<AO+—m—%+m‘m2>'—(mQth) 2/, (6.11)
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From (6.2), (6.3), and (6.8), we get

1 2 1
12( 12 1 ——2+—) = (myDyt) ™™ (6.12)
t ml ml m1m2 m2 my

This is satisfied and reduces to a relation between the constants when
my,=1 (6.13)
From (6.6b) and (6.8), we have

. A
4mpG :t—;’ (6.14)

Equations (6.11) and (6.14) give G/ G. When G« 1/, then from (6.10) and
(6.11) the pressure and density vary as 1/t The model is singular at 1=0.
We can easily obtain

1 (1 1 1
p+p=———2(———— ) (6.152)
o

por=pia B2 ) o] s

1 1/ 4 3 1
pt3p=—7 [“— (-z—-—~ +AO>+(m2D2t)‘2/’"2] (6.15¢)
T m, m, mm,

1 1/3 5 1
— - - — ——— -2 ~2/m, .
p—3p (tz ( ) F— 2A0> (m,D,t) ] (6.15d)

The reality conditions p =0, p=0, and p —3p = 0 impose further restric-
tions on the model besides (6.9), (6.12), and (6.13).

7. BIANCHI TYPE V MODEL
The Bianchi type V metric is
dS?=dt* — Ri(t) dx*— e **[R5(t) dy*+ R3(t) dz?] (7.1)

where a = const.
The field equations (2.1)-(2.2) for the metric (7.1) reduce to

R KRRy @ oA (7.2)
R, R, R,R, RZ 7P '

BR R
R, R, RR, R P ‘
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5—1+R2+RR2————8 Gp—A 7.4
R, R, R,R, RZ °"VP~ (7.4)

R.R, R,R, R;R, 3a*
+ + —— = -
R,R, R,R; R;R, R? BmGp—A  (7.5)

R Ry R

—2 i .
TR IR0 (1.6)
R, R, R, ,
87TpG+87rG|:p+(p+p)(—+ 24 )]‘H\:O (7.7)
Ry, R, R

If we suppose that the energy conservation law holds, then equation
(7.7) reduces to

p+(p +p)<Ri ij ) = (7.82)
=—87Gp (7.8b)
We define
V() =(R;R:R5)"”? (7.9)
We assume the solution of equations (7.2)-(7.8) in the form
V(t)=(mDt)"™
Ry(t)=(m D)™
Ry(t)=(m,D,1)"/™ (7.10)

Ry(1) = (m3D51) V'™
A(t):A0t~29 m, m;, m,, m3¢0

where m, m,, m,, m;, D, D,, D,, D5, and A, are arbitrary constants.
From (7.6), (7.9), and (7.10), we get

<i+—l—+—1—> (7.11)

1,13 (7.12)
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Using (7.10) in (7.2) and (7.5), we get the pressure and density,

srp=(sr L Ly L)
TOP =2\ Ao mi m, m: my; mym,

—a*(m D;t)”¥™ (7.13)

1 1 1 1
87Gp=—— (A0+ + + )
t- mym, Hym; MmMsm,
+3a%(m,Dyt) ™™ (7.14)
From (7.2), (7.3), (7.4), and (7.10), we have

1 1 1 1 1 1

— - = (7.15)
m, m, mM,M; m, m, mpymj
1 1 1 1 1 1
——— = (7.16)
m; m; mam; my m; mim,
From (7.8b) and (7.10), we get
. A
4pr=739 (7.17)

Equations (7.14) and (7.17) give G/G. If we assume m, =1 and G o 1/1,
then from (7.13) and (7.14) the pressure and density vary as 1/z. The model
1s singular at ¢=0.

Further
SRR YT W N R
PEP=oaG | 2\ m2 m, m3 m; mm, mms
+2a2(m1D1t)2/”‘l:‘ (7.182a)
T G S N M S S TYN
PrP=erG | m, m5 mi; m; mm, m,m, mym 0
+4a2(m181{}'2/”‘1] {7.18b}
1 3 3 3 3 2 1 1
+3p= s (2t 7.18¢
pTop 87rGt2< " md om, m: om, mym, mm, m3m,> ( )
3 _4[1(_3__1 3,3 4 v 1 4A>
PooP =G my, m3 mi m; oM oM, mym, 0

+6a2(m1D1t)2/’"1] (7.18d)
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The reality conditions p =0, p =0, and p —3p = 0 impose further restrictions
on the model besides m, =1, (7.15), and (7.16).

8. BIANCHI TYPE V], MODEL

The Bianchi type VI, metric is
dS?=dr*— Ri(t) dx*— R3(t)e ** dy>— Ri(t)e** dz* (8.1)

where a = const.
The field equations (2.1)-(2.2), for the metric (8.1) reduce to

D2 B 2 o RrGp— A 8.2
R, R, R,R, RZ 7P ®2)

R, R, R,R, d°
SIS S gaGp— A 8.3
R, R, RR, R 7P ®3)

Sy 2 R T 8aGp—A (8.4)
R,'R, RR, R P
RR, RR, RR,
+ 22 3l o 8aGp-A (8.5
R.R, R,R, R,R, R, °F (®:3)

R, R,
=2_==9 8.6
R, R, (8.6)
. ) R, R, R, .
8, G+877G[ +(p+ (—1+——+—)]+A:O (8.7)
P p+(p+p) R R

If we suppose that the energy conservation law holds for matter, then
(8.7) reduces to

ﬁ+(p+p)<%+%+%>:0 (8.8a)
A=-8mpG (8.8b)

We define
V(t)=(R,R,R3)"" (8.9)

We assume the solution of equations (8.2)-(8.8) in the form
V(1) = (mDt)"™
R,(t)=(m, D, t)"'™
R,(t) = (m,D,t)"/™ (8.10)
Ry(t) = (m;Dst)/™s
A(t) = Aot 2, m, my, My, m;#0
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where m, m,, m,, m;, D, D,, D,, D;, and A, are arbitrary constants. From
(8.6), (8.9), and (8.10), we get

m, = m; (8.11)
1

ERTEREREL 12

m 3\m m, m

Using (8.10) in (8.2) and (8.5), we get p and p, respectively,

1 1 1 1 1 1
8w6p=—z(Ao+——2——+—f—“*)+a2(m1D1t)-2/"‘1 (8.13)
t m, m, mi; myMms; M;

1 1 1 1
SwGp=——2(AO+ + + )+a2(m1D1t)_2/"’1 (8.14)
t mym, mym; mMzm,

From (8.2)-(8.4) and (8.10), we have

1/1 1 1 11 1
Sl + Tt
t"\mi m;, mym; m; m, MM,

=2a*(m,D;t) Y™ (8.15)
1(1 1 1 11 1 )
S\ -t
t"\my m; mym, m3; m; Mym;

=2a*(m,D,t) ¥™ (8.16)

The equations are satisfied leading to relations between the constants
when m, =1.

From (8.8b) and (8.10), we get

.. A
47pG = t—;’ (8.17)

Equations (8.14) and (8.17) give G/ G. When m, =1, G/ G 1/1. When we
take GC1/t, the pressure and density vary as 1/t The model is singular
at t=0.

Further

SRR T T T T R T
PTP=erG |2 m; m, m3: m; mm, mym

+2a2(m1D1t)'2/'"1] (8.18a)
USRS TS T S S Y RS
PP =oaGr m, mj; m; mi: mm, mym,; mym, 0 ’

902/32/6-12
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r

SN EYERE DN VO TR T

P 87G Lt*\m3 m, m3 my, mom; msm; mym, ¢
+4a*(m,D,t)™¥™ (8.18¢)

SEVRNS T 1 1 N N SN S S T

PP 8aG L\t my, m5 m3 my; mm, mym, mym, o
—2a2(m1D1t)_2/’"1:| (8.18d)

The reality conditions p=0, p=0, and p —3p =0 put restrictions on
the model.

9. BIANCHI TYPE VIII MODEL
The Bianchi type VIII metric is
dS®=dt*— S§? dx*— R? dy*— (R*sinh® y + §? cosh? y) dz?
—25%cosh y dx dz 9.1)

where S=S(t), R=R(1).
The field equations (2.1)-(2.2) for the metric (9.1) reduce to

R (R\> 1 3§

__.|_ f— —_—_—— = — .2

22 (R) AR 87Gp— A (9:2)
R S RS 18
—4+=+—+-==87Gp-A (9.3)

R S RS 4R*

RS (R\*> 1 187
22 == =-8mpG— 4
2Rs (R) RE 4R SmOTA 04

. S 2R .
87rpG+87TG|:ﬁ+(p+p)<§+?>:|+A=0 (9.5)

If we assume that the energy conservation law holds for matter, then
(9.5) reduces to

S R
A=-87Gp (9.6b)

ﬁ+(p+p)(§+—2—8) =0 (9.6a)

We define
V(1) =(SRH)Y? (9.7)
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We assume the solution of equations (9.2)-(9.6) in the form
V(1) =(mDt)"/™
S(t)=(m,D,;t)"'™
R(1)=(m,D,t)"™
A(t) = Aot 2, m, my, m,# 0

where m, m;, m,, D, D,, D,, and A, are constants.
From (9.7) and (9.8), we get

Im,m,

m =
2m,+m,
Using (9.8) in (9.2) and (9.4), we get p and p, respectively,

1 3 2
trr - (25 2) -
! m; 2
3 (m, Dy t)*™
4 (m,D,1)*™
1 2 1 1
8mGp = - 7(A0+—~—+~2) b
t mimy m3)  (myD,t)7 "
+_1_ (m,D,1)*™
4 (myD,1)¥ ™

From (9.2}, (9.3), and (9.8), we have

12 1 1 1 1

2 2 2
t(’nz m, my m m1m2>

(mlDlt)z/ml

={(m,D,t) ™+
(m2Ds1) (szzt)4/m2

1055

9.8)

(9.9

(9.10)

(9.11)

(9.12)

This is satisfied and reduces to a relation between the constants when

m=m,=1

From (9.6b) and (9.8), we have

. A
4'n'pG=t—30

(9.13)

(9.14)
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Equations (9.11) and (9.14) give G/ G. If we take Gc1/¢ and assume that
(9.13) holds, then the pressure and density vary as 1/t The model is singular
at t=0.

Further

+ __L[l(i__l__ 1 )
PEP= 4G | P m: m, mm,
_1 (mlle)z/m‘:I
4 (myDyt)*/™

1 1 1 2 1
S

(9.15a)

1 (mlDlt)z/m‘]

Do) DT
2472

(9.15b)
(9.15¢)

2/m;
é Mjl (9.15d)

+2(myD,t) 2™+
(mz 2 ) 4 (m2D2t)4/'"2

The reality conditions p =0, p =0, and p — 3p = 0 impose further restrictions
on the model.

10. BIANCHI TYPE IX MODEL
The Bianchi type IX metric is
dS*=di*— 8% dx*— R* dy* — (R?sin® y+ 8% cos® y) dz°
+28%cos ydxdz (10.1)
where
S=S(1), R=R(t)
The field equations (2.1)-(2.2) for the metric (10.1) reduce to

. ,
R (R, L 35 o Goon (102
2 (R) R 4R TP (102)
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R S RS 1§
—+—=+——+——=87Gp —
RVs T Rsta R 8mOP A
RS (R\* 1 1§
—+| =) +t—=——=5=-87Gp—A
RS (R) R 4R 7F
. , S _R .
87pG+87G| p+(p+p) §+2E +A=0

If we assume that the energy conservation law holds for
(10.5) reduces to

ﬁ+(p+p)(g+2§) =0
A=—-87Gp
We define
V(t)=(SR")"*
We assume the solution of equations (10.2)-(10.6) in the form
V(t) = (mDt)"/™
S(t)=(m,Dt)"'™
R(t)=(m,D,t)/™
A(t)=Aqt 72, m, my, my#0,
where m, m;, m,, D, D,, D,, and A, are arbitrary constants.
From (10.7) and (10.8), we have
_ 3m;m,
2m,+m,

Using (10.8) in (10.2) and (10.4), we get p and p, respectively,
1 3 2
87Gp=— (Ao-f———z———) +(m,Dyt) 7Y™
t m,

3 (m,Dy1)¥™
4 (m,D, )%™

2 1
+——2‘> - (szzt)—2/m2
mm, m;

1
87Gp = —? <A0+

+l (m,D1)>™
4 (myD,1)¥™

1057

(10.3)

(10.4)

(10.5)

matter,

(10.6a)

(10.6b)

(10.7)

{10.8)

(10.9)

(10.10)

(10.11)
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From (10.2), (10.3), and (10.8), we get

1/(1 1 1 2 1
Sl — 5t
'\mi m;, mm, m; m,
(m1D1t)2/m'

=(myD,t)™ %™
(m2 2 ) (szzt)4/m2

(10.12)

This 'is satisfied and leads to a relation between the constants when
m=my,=1 (10.13)
From (10.6b) and (10.8), we get

. A
47TpG=t—30 (10.14)

From (10.11) and (10.14) we can obtain G/G. If we assume that Goc1/¢
and also that (10.13) holds, then from (10.10) and (10.11) the pressure and
density vary as 1/¢. The model is singular at ¢ =0.

Also

VA
PTP= 4G m: m, mm,
_l(mlDlt)Z/ml:i

+ (D)7 He

ST Y YSS HE
p=p 47TG tz 0 m,m-, m% m-
1 (mlDlt)Z/"“:l
2 (myD,t)*™

' _;HA __1_+i_i)
P p_47rG 2 mm, m; m,

~(myD,t) ™"+ (10.15b)

+(myD,t) /™

2/ml
_M_jl (10.15¢)

(szzt)4/mz

1 1/3 1 5
“p=— | = 2 oA
p3p 4wG[t2(m2 mm, ms 0)
_5_ (mlDlt)z/ml:l

—2(myDyt) "™+
(mZ 2 ) 4 (rnzDzl)d,/m2

(10.15d)

The reality conditions p =0, p =0, and p —3p = 0 impose further restrictions
on the model.
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11. CONCLUSIONS

We have investigated Bianchi-type models in which the cosmological
and gravitational constants vary with time. The Hubble parameter is assumed
to follow a power-law variation with time and A oc ¢ 7% All the models start
from a singular state at the epoch ¢t =0. The gravitational constant G can
be a decreasing or increasing function of time. For GoC1/t, the pressure
and density show a simple behavior and decrease with time. The cosmologi-
cal constant A is gradually reduced as the universe expands.
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